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Introduction
An envelope of a family of curves is a curve tangent to all members of this family at some
point. We will provide a basis for the envelope algorithm, which can define an enveloping
curve for any parameterized family of curves for which an envelope exists. We will also
show the utility of envelopes and the envelope algorithm in solving the Ladder Problem, as
well as providing a more simple geometric proof. Lastly, we will use envelopes to explore
the geometry of the work of artist Emma Kunz.

Finding the Envelope
Although there exist many definitions for a mathematical envelope, perhaps the most
intuitive in our context is the definition of the geometric envelope.

Definition. Let F be a family of curves such that each Ct ∈ F is given by F (x, y, t) = 0
for some fixed t, where Ct is smooth, and parameter t lies in an open interval. Then, the
geometric envelope1 of F is a smooth curve tangent at all points to some Ct ∈ F .

Importantly, envelopes are not necessarily unique, and some are larger than others. In
fact, the geometric envelope is a subset of the discriminant envelope,1 the envelope defined
by the envelope algorithm. Before proving this algorithm, first, it is important to develop
intuition on how one might derive such an algorithm. Since an envelope must be tangent
at all points to some Ct ∈ F , all points contained in the envelope must also be contained
in some Ct. Therefore, all points on an enveloping curve E must satisfy F (x, y, t) = 0.

The second property which enables the formation of the envelope algorithm may be less
obvious. As two nearby curves approach one another, the limit of their intersection
approaches a point on the enveloping curve.2 Another subset of the discriminant envelope,
the limiting position envelope,1 is defined this way. Let Ct and Ct′ be nearby curves in
family F . If the limit of intersection of Ct and Ct′ as t′ → t is (x, y), then (x, y) is a
member of the limiting position envelope. Therefore, at the enveloping points, there is
no change in F (x, y, t) with respect to t. It then follows that all points on an enveloping
curve satisfy ∂F

∂t
(x, y, t) = 0.

Through the combination of these two definitions, we arrive at the envelope algorithm.

Algorithm. Let F be a family of curves such that each Ct ∈ F is given by F (x, y, t) = 0
for some fixed t, where Ct is smooth, and parameter t lies in an open interval; and let E
be an envelope of F . The following steps (if possible), will yield a closed form expression
for E.
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1. Evaluate F (x, y, t) = 0 for t in terms of x and y.

2. Evaluate ∂F
∂t
(x, y, t) = 0 for t in terms of x and y.

3. Combine the equations given by (1) and (2) via the elimination of t.

This algorithm will be essential to the formation of a closed form equation of the curve
found in Work No. 13 by Emma Kunz, as well as the solution to the ladder problem.

Two Proofs of the Ladder Problem

Figure 1: Ladder Problem3

The ladder problem asks to find the longest possible line-
segment (the ladder) that can move freely around the
corner (Fig.1). We imagine a vertical ladder on the wall,
which is then gently kicked on the bottom, allowing it
to slide across the floor while maintaining contact with
the wall. This falling ladder traces an envelope, and the
longest possible ladder is the one whose envelope intersects
the point (a,b). Thus, our re-framed problem is to find a
closed formula for the envelope of the falling ladder. We
present 2 solutions, one using the algorithm and another
using geometry.

Figure 2: Diagram for First
Solution

Solution 1. The positions of the ladder can be character-
ized by linear equations parameterized by the angle α (Fig
2) restricted to the interval [0, π/2]. Then the equation of
the line is

x

cosα
+

y

sinα
− L = 0 (1)

where L is the length of the ladder. We differentiate with
respect to α to get x sinα

cos2 α
− y cosα

sin2 α
= 0. We can rearrange

to get: tanα = y1/3

x1/3 , so

cosα =
x1/3√

x2/3 + y2/3
and sinα =

y1/3√
x2/3 + y2/3

. (2)

We substitute these results into equation (1) to eliminate α and arrive at x2/3
√
x2/3 + y2/3+

y2/3
√

x2/3 + y2/3−L = 0. We can further simplify and obtain our solution (x2/3+y2/3)3/2 =
L. If we want a parametric form for our envelope, we can cube root both sides and substitute
into (2) to get x = L cos3 α and y = L sin3 α.

Figure 3: Picture Proof for
Second Solution

Solution 2. Our next solution only requires basic geometry
and an intuitive assumption that is verified by physics. The
assumption is that the point P (Fig.3) on the ladder is
the point of tangency with our desired envelope such that
line O’P is perpendicular to the ladder. Then, by similar
triangles, ∠PO′B = θ. Then we have |PB| = L sin2 θ, y =
|X ′P | = L sin3 θ, x = |OB| − |X ′B| = L cos θ(1 − sin2 θ),
so x = L cos3 θ. We arrived at the same parameterization
as our previous solution. If we want an equation as well,
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we simply solve for cos θ and sin θ and then use cos2 θ+sin2 θ = 1. This yields our equation
( x
L
)2/3 + ( y

L
)2/3 = 1, which is equivalent to our first solution.

Now to understand why our assumption was correct, recall that our problem is motivated
by a physical ladder falling. At every instant, each point on the ladder has a certain
velocity. Since the ladder is tangent to the envelope (by definition) the point of tangency
must have a velocity directly down the ladder (otherwise the ladder would be moving into
or out of the envelope). To find the point that has velocity down the ladder, we use the
physics concept of instantaneous center of rotation. Based on the velocities of point A
and B, we know the ladder is "rotating" about point O’. Thus, dropping a perpendicular
onto the ladder reveals that point P does have the appropriate velocity, validating our
assumption.

A Parabola in Plain Sight
Where the envelope of the ladder problem can be resolved more elegantly using geometry,
other envelopes are better suited to the envelope algorithm. One such example would
be the derivation of the envelope found in Work No. 13 by Emma Kunz (Figure 4).

Figure 4: Work No. 13,
Emma Kunz

Here, it can clearly be seen that the diagonal lines near
the edges of this artwork form the illusion of four similar
curves, each spanning a different quadrant. A closed form
expression for these curves can be derived for each boundary
curve through the application of the envelope algorithm.
We will show our derivation of these enveloping curves as
well as outline the general process for applying the envelope
algorithm.

The first step in this derivation is to define F , the family
of curves. Considering first the family of curves which
mostly lie in quadrant I, we may first observe that there
are 40 lines in this family, which gradually change in slope
from the horizontal line at y = 20 to the vertical line at

x = 20, taking the origin to be located at the center and the width of the painting to span
[−20, 20]. It then follows naturally that this family of curves can be defined by the sets of
solutions (x, y) of y = t

t−40
(x− t+ 20) + 20, for each t ∈ N, where t is a parameter such

that 0 ≤ t ≤ 40. Rearranging variables, we find family FI = {Ct : 0 < t < 40} where each
curve Ct is defined as:

Ct = {(x, y) : t2 − tx+ ty − 40t− 40y + 800 = 0}

Importantly, we extend t ∈ (0, 40) to create a continuous, and differentiable family of
curves with an equivalent envelope to that of the discrete curves found in the artwork. We
can then begin to apply the envelope algorithm.

Given our quadratic condition F (x, y, t) = t2−tx+ty−40t−40y+800, we can solve explicitly
for t in terms of x and y as t = 1

2

(
±
√
x2 − 2xy + 80x+ y2 + 80y − 1600 + x− y + 40

)
.

Next, we solve for Ft(x, y, t) = 2t − x + y − 40, and solve for t in terms of x and y as
t = 1

2
(x− y + 40). Finally, solving both equations at the same fixed parameter t, we can

3



MATH 280 S. Dhar1, S. Jeffrey1

simplify the curve

1

2

(
±
√

x2 − 2xy + 80x+ y2 + 80y − 1600 + x− y + 40
)
=

1

2
(x− y + 40)

which is the parabola EI where EI = {(x, y) : x2 + 80x− 2xy + 80y + y2 − 1600 = 0}.

Figure 5: Envelope in Quadrant I

Graphically, we can verify that this parabola does
in fact form an envelope on the family of curves
parameterized in quadrant I, as seen in Figure 5. The
tangent curves Ct ∈ F are plotted in grey, and the
enveloping parabola EI is plotted at the boundary in
red. Note that the curves Ct plotted are the curves
Ct where t ∈ 0, . . . , 40, rather than the continuous
family of curves Ct where t ∈ (0, 40). To validate the
calculus used in the envelope algorithm, the family
of curves must be parameterized on an open interval.
This is because ∂F

∂t
only exists for a continuous and

differentiable parameterization. In Kunz’s artwork,
only curves parameterized by an integer are drawn,

and Figure 5 is meant to recreate closely her work. Figure 6 in the Appendix showcases a
full recreation of all four families of curves and their boundary envelopes.

Following the same procedure, we can define families of curves for each quadrant:

FI = {Ct : 0 < t < 40} where Ct = {(x, y) : t2 − tx+ ty − 40t− 40y + 800 = 0}
FII = {Ct : 0 < t < 40} where Ct = {(x, y) : t2 + tx+ ty − 40t− 40y + 800 = 0}
FIII = {Ct : 0 < t < 40} where Ct = {(x, y) : t2 + tx− ty − 40t+ 40y + 800 = 0}
FIV = {Ct : 0 < t < 40} where Ct = {(x, y) : t2 − tx− ty − 40t+ 40y + 800 = 0}

And solve explicitly for the parabolas which form an envelope on them:

EI = {(x, y) : x2 + 80x− 2xy + 80y + y2 − 1600 = 0}
EII = {(x, y) : x2 − 80x+ 2xy + 80y + y2 − 1600 = 0}
EIII = {(x, y) : x2 − 80x− 2xy − 80y + y2 − 1600 = 0}
EIV = {(x, y) : x2 + 80x+ 2xy − 80y + y2 − 1600 = 0}

Conclusion
In solving for these envelopes, I am reminded of a quote by Michael Atiyah:

Algebra is the offer made by the devil to the mathematician. The devil says: I
will give you this powerful machine, it will answer any question you like. All
you need to do is give me your soul: give up geometry and you will have this
marvelous machine.

In this way, the beauty of mathematics is often obscured by the treachery of algebra. No
clearer is this seen than in the difference between our two proofs of the Ladder Problem.
In the solution given by Kalman,3 trigonometry wrangles the algebra until it is reduced to
a series of exponents. It is not immediately obvious why the resulting equation is true,
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and it is rather miraculous that the algebra was navigated in the first place. But, alas, the
algebra works its magic and determines the curve to be (x2/3 + y2/3)3/2 = L.

Contrast this now with the geometric picture proof. Through the drawing of a few clever
azimuths, we can create similar triangles and see how naturally the solution falls from the
trigonometry inherent to the problem. Clearly, this second solution forms a more intuitive
understanding of the Ladder Problem than the raw algebra in the first solution.

But more than intuitive, the geometric solution to the Ladder Problem is beautiful. So
clearly does the asteroid curve follow from the geometry that one cannot fail to appreciate
the wonder therein. Similarly, the beauty inherent to art is self-evident, and yet when the
formulas are abstracted from the painting of Emma Kunz, the beauty seems to disappear
alongside the geometry. The derivation is messy vector calculus, which takes striking
families of curves and translates them into dull multi-variable functions. Then, from
algebra that would only excite the most passionate of high-school teachers, a parabola
appears as if it were magic. Yet, unlike the odd letters which denote strange sets, the
parabola itself is tangible, It can be graphed, it can be shown. And when the family of
curves is graphed, and the envelope is drawn to fill the imaginary limits of intersections our
minds have already filled, the image is reignited from the beauty lost from the algebraic
steps.

We made this sacrifice long ago to trade geometry for algebra, and in doing so hid the beauty
of mathematics behind functions and math. Horrible, horrible math. However, envelopes
provide the rare occasion where the geometry becomes unobscured and rejuvenated with
beauty. We find again what we have lost, what we have sacrificed. We can show these
things to a layman and if nothing else, communicate the beauty inherent to mathematics.
More than interest, more than curiosity, this is the importance of studying mathematical
art. And we have found that envelopes are a wondrous tool to extract geometry from
algebra and showcase math that anyone may appreciate.
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Appendix

Figure 6: Full Plot of Families of Curves and their Envelopes
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